21 resultados para Intelligent systems
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The requirements for the memory structuring of intelligent systems are discussed. Simultaneously with the introduction of information into memory there should take place the processes of association links (bonds) formation, hierarchy systematizing, classification and concept formation. The growing pyramidal networks (GPN) meet these requirements. Many years of experience of GPN application for data analyses in chemistry and material studies proves their sufficiently high potential.
Resumo:
The paper deals with a problem of intelligent system’s design for complex environments. There is discussed a possibility to integrate several technologies into one basic structure. One possible structure is proposed in order to form a basis for intelligent system that would be able to operate in complex environments. The basic elements of the proposed structure have found their implemented in software system. This software system is shortly presented in the paper. The most important results of experiments are outlined and discussed at the end of the paper. Some possible directions of further research are sketched.
Resumo:
Methodology of computer-aided investigation and provision of safety for complex constructions and a prototype of the intelligent applied system, which implements it, are considered. The methodology is determined by the model of the object under scrutiny, by the structure and functions of investigation of safety as well as by a set of research methods. The methods are based on the technologies of object-oriented databases, expert systems and on the mathematical modeling. The intelligent system’s prototype represents component software, which provides for support of decision making in the process of safety investigations and investigation of the cause of failure. Support of decision making is executed by analogy, by determined search for the precedents (cases) with respect to predicted (on the stage of design) and observed (on the stage of exploitation) parameters of the damage, destruction and malfunction of a complex hazardous construction.
Resumo:
A class of intelligent systems located on anthropocentric objects that provide a crew with recommendations on the anthropocentric object's rational behavior in typical situations of operation is considered. We refer to this class of intelligent systems as onboard real-time advisory expert systems. Here, we present a formal model of the object domain, procedures for obtaining knowledge about the object domain, and a semantic structure of basic functional units of the onboard real-time advisory expert systems of typical situations. The stages of the development and improvement of knowledge bases for onboard real-time advisory expert systems of typical situations that are important in practice are considered.
Resumo:
The paper is related with the problem of developing autonomous intelligent robots for complex environments. In details it outlines a knowledge-based robot control architecture that combines several techniques in order to supply an ability to adapt and act autonomously in complex environments. The described architecture has been implemented as a robotic system that demonstrates its operation in dynamic environment. Although the robotic system demonstrates a certain level of autonomy, the experiments show that there are situation, in which the developed base architecture should be complemented with additional modules. The last few chapters of the paper describe the experimentation results and the current state of further research towards the developed architecture.
Resumo:
The paper deals with a problem of intelligent system’s design for complex environments. There is discussed a possibility to integrate several technologies into one basic structure that could form a kernel of an autonomous intelligent robotic system. One alternative structure is proposed in order to form a basis of an intelligent system that would be able to operate in complex environments. The proposed structure is very flexible because of features that allow adapting via learning and adjustment of the used knowledge. Therefore, the proposed structure may be used in environments with stochastic features such as hardly predictable events or elements. The basic elements of the proposed structure have found their implementation in software system and experimental robotic system. The software system as well as the robotic system has been used for experimentation in order to validate the proposed structure - its functionality, flexibility and reliability. Both of them are presented in the paper. The basic features of each system are presented as well. The most important results of experiments are outlined and discussed at the end of the paper. Some possible directions of further research are also sketched at the end of the paper.
Resumo:
* The work is partially suported by Russian Foundation for Basic Studies (grant 02-01-00466).
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
In this paper a prior knowledge representation for Artificial General Intelligence is proposed based on fuzzy rules using linguistic variables. These linguistic variables may be produced by neural network. Rules may be used for generation of basic emotions – positive and negative, which influence on planning and execution of behavior. The representation of Three Laws of Robotics as such prior knowledge is suggested as highest level of motivation in AGI.
Resumo:
This article presents the principal results of the Ph.D. thesis Intelligent systems in bioinformatics: mapping and merging anatomical ontologies by Peter Petrov, successfully defended at the St. Kliment Ohridski University of Sofia, Faculty of Mathematics and Informatics, Department of Information Technologies, on 26 April 2013.
Resumo:
We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
The paper develops a set of ideas and techniques supporting analogical reasoning throughout the life-cycle of terrorist acts. Implementation of these ideas and techniques can enhance the intellectual level of computer-based systems for a wide range of personnel dealing with various aspects of the problem of terrorism and its effects. The method combines techniques of structure-sensitive distributed representations in the framework of Associative-Projective Neural Networks, and knowledge obtained through the progress in analogical reasoning, in particular the Structure Mapping Theory. The impact of these analogical reasoning tools on the efforts to minimize the effects of terrorist acts on civilian population is expected by facilitating knowledge acquisition and formation of terrorism-related knowledge bases, as well as supporting the processes of analysis, decision making, and reasoning with those knowledge bases for users at various levels of expertise before, during, and after terrorist acts.
Resumo:
In this work we suggest the technology of creation of intelligent tutoring systems which are oriented to teach knowledge. It is supposed the acquisition of expert’s knowledge by using of the Formal Concept Analysis method, then construction the test questions which are used for verification of the pupil's knowledge with the expert’s knowledge. Then the further tutoring strategy is generated by the results of this verification.
Resumo:
Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.