8 resultados para Integral Representations

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS Subj. Classification: MSC2010: 11F72, 11M36, 58J37

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: Primary 33C45, 40A30; Secondary 26D07, 40C10

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A relation showing that the Grünwald-Letnikov and generalized Cauchy derivatives are equal is deduced confirming the validity of a well known conjecture. Integral representations for both direct and reverse fractional differences are presented. From these the fractional derivative is readily obtained generalizing the Cauchy integral formula.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Math. Subject Classification: 33E12, 65D20, 33F05, 30E15

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematics Subject Classification: Primary 30C40

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let (Xi ) be a sequence of i.i.d. random variables, and let N be a geometric random variable independent of (Xi ). Geometric stable distributions are weak limits of (normalized) geometric compounds, SN = X1 + · · · + XN , when the mean of N converges to infinity. By an appropriate representation of the individual summands in SN we obtain series representation of the limiting geometric stable distribution. In addition, we study the asymptotic behavior of the partial sum process SN (t) = ⅀( i=1 ... [N t] ) Xi , and derive series representations of the limiting geometric stable process and the corresponding stochastic integral. We also obtain strong invariance principles for stable and geometric stable laws.