18 resultados para Integers
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This article provides necessary and sufficient conditions for both of the Diophantine equations X^2 − DY^2 = m1 and x^2 − Dy^2 = m2 to have primitive solutions when m1 , m2 ∈ Z, and D ∈ N is not a perfect square. This is given in terms of the ideal theory of the underlying real quadratic order Z[√D].
Resumo:
It is proved that for every k there exist k triples of positive integers with the same sum and the same product.
Resumo:
If ξ is a countable ordinal and (fk) a sequence of real-valued functions we define the repeated averages of order ξ of (fk). By using a partition theorem of Nash-Williams for families of finite subsets of positive integers it is proved that if ξ is a countable ordinal then every sequence (fk) of real-valued functions has a subsequence (f'k) such that either every sequence of repeated averages of order ξ of (f'k) converges uniformly to zero or no sequence of repeated averages of order ξ of (f'k) converges uniformly to zero. By the aid of this result we obtain some results stronger than Mazur’s theorem.
Resumo:
It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of C\R then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.
Resumo:
Here we study the integers (d, g, r) such that on a smooth projective curve of genus g there exists a rank r stable vector bundle with degree d and spanned by its global sections.
Resumo:
Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means that in every r-coloring of the vertices of G there exists a monochromatic ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the vertex Folkman numbers F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G} We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem 3) and F (a1 , . . . , ar ; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).
Resumo:
In this article we explore the so-called two-dimensional tree− search problem. We prove that for integers m of the form m = (2^(st) − 1)/(2^s − 1) the rectangles A(m, n) are all tight, no matter what n is. On the other hand, we prove that there exist infinitely many integers m for which there is an infinite number of n’s such that A(m, n) is loose. Furthermore, we determine the smallest loose rectangle as well as the smallest loose square (A(181, 181)). It is still undecided whether there exist infinitely many loose squares.
Resumo:
We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.
Resumo:
This paper presents a novel error-free (infinite-precision) architecture for the fast implementation of 8x8 2-D Discrete Cosine Transform. The architecture uses a new algebraic integer encoding of a 1-D radix-8 DCT that allows the separable computation of a 2-D 8x8 DCT without any intermediate number representation conversions. This is a considerable improvement on previously introduced algebraic integer encoding techniques to compute both DCT and IDCT which eliminates the requirements to approximate the transformation matrix ele- ments by obtaining their exact representations and hence mapping the transcendental functions without any errors. Apart from the multiplication-free nature, this new mapping scheme fits to this algorithm, eliminating any computational or quantization errors and resulting short-word-length and high-speed-design.
Resumo:
* Work is partially supported by the Lithuanian State Science and Studies Foundation.
Resumo:
Let nq(k, d) denote the smallest value of n for which an [n, k, d]q code exists for given integers k and d with k ≥ 3, 1 ≤ d ≤ q^(k−1) and a prime or a prime power q. The purpose of this note is to show that there exists a series of the functions h3,q, h4,q, ..., hk,q such that nq(k, d) can be expressed.
Resumo:
2000 Mathematics Subject Classification: 91A46, 91A35.
Resumo:
Христина Костадинова, Красимир Йорджев - В статията се обсъжда представянето на произволна бинарна матрица с помощта на последователност от цели неотрицателни числа. Разгледани са някои предимства и недостатъци на това представяне като алтернатива на стандартното, общоприето представяне чрез двумерен масив. Показано е, че представянето на бинарните матрици с помощта на наредени n-торки от естествени числа води до по-бързи алгоритми и до съществена икономия на оперативна памет. Използуван е апарата на обектно-ориентираното програмиране със синтаксиса и семантиката на езика C++.
Resumo:
ACM Computing Classification System (1998): E.4.
Resumo:
A partition of a positive integer n is a way of writing it as the sum of positive integers without regard to order; the summands are called parts. The number of partitions of n, usually denoted by p(n), is determined asymptotically by the famous partition formula of Hardy and Ramanujan [5]. We shall introduce the uniform probability measure P on the set of all partitions of n assuming that the probability 1/p(n) is assigned to each n-partition. The symbols E and V ar will be further used to denote the expectation and variance with respect to the measure P . Thus, each conceivable numerical characteristic of the parts in a partition can be regarded as a random variable.