4 resultados para Information-Seeking Behavior

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is proposed an agent approach for creation of intelligent intrusion detection system. The system allows detecting known type of attacks and anomalies in user activity and computer system behavior. The system includes different types of intelligent agents. The most important one is user agent based on neural network model of user behavior. Proposed approach is verified by experiments in real Intranet of Institute of Physics and Technologies of National Technical University of Ukraine "Kiev Polytechnic Institute”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to evaluate the effectiveness of learning by doing as a practical tool for managing the training of students in "Library Management" at the ULSIT, Sofia, Bulgaria, by using the creation of project 'Data Base “Bulgarian Revival Towns” (CD), financed by Bulgarian Ministry of Education, Youth and Science (1/D002/144/13.10.2011) headed by Prof. DSc Ivanka Yankova, which aims to create new information resource for the towns which will serve the needs of scientific researches. By participating in generating the an array in the database through searching, selection and digitization of documents from these period, at the same time students get an opportunity to expand their skills to work effectively in a team, finding the interdisciplinary, a causal connection between the studied items, objects and subjects and foremost – practical experience in the field of digitization, information behavior, strategies for information search, etc. This method achieves good results for the accumulation of sustainable knowledge and it generates motivation to work in the field of library and information professions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The real purpose of collecting big data is to identify causality in the hope that this will facilitate credible predictivity . But the search for causality can trap one into infinite regress, and thus one takes refuge in seeking associations between variables in data sets. Regrettably, the mere knowledge of associations does not enable predictivity. Associations need to be embedded within the framework of probability calculus to make coherent predictions. This is so because associations are a feature of probability models, and hence they do not exist outside the framework of a model. Measures of association, like correlation, regression, and mutual information merely refute a preconceived model. Estimated measures of associations do not lead to a probability model; a model is the product of pure thought. This paper discusses these and other fundamentals that are germane to seeking associations in particular, and machine learning in general. ACM Computing Classification System (1998): H.1.2, H.2.4., G.3.