5 resultados para Information Foraging Theory, Search Economic Theory, Interactive Probability Ranking Principle
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The conceptual foundations of the models and procedures for prediction of the avalanche-dangerous situations initiation are considered. The interpretation model for analysis of the avalanche-dangerous situations initiation based on the definition of probabilities of correspondence of studied parameters to the probabilistic distributions of avalanche-dangerous or avalanche non-dangerous situations is offered. The possibility to apply such a model to the real data is considered. The main approaches to the use of multiple representations for the avalanche dangerous situations initiation analysis are generalized.
Resumo:
Рассматриваются общие проблемы кластеризации. Предложена концепция «множеств» и «расстояний соответствия» в построении кластеров, рассмотрены модели кластеризации, в которых «множествами соответствия» являются гиперплоскости, а «расстояниями соответствия» – различные варианты расстояний в связи с соответствующими гиперплоскостями. Развит аппарат псевдообращения по Муру – Пенроузу: приведены рекуррентные формулы возмущения для ортогональных проекторов и R-операторов, связанных с псевдообращением. Рекуррентные формулы возмущения использованы для построения алгебраического варианта Jack Knife’а. Приведена сборка важных для приложений результатов, касающихся псевдообращения.
Resumo:
The basic structure of the General Information Theory (GIT) is presented in the paper. The main divisions of the GIT are outlined. Some new results are pointed.
Resumo:
This paper considers the problem of concept generalization in decision-making systems where such features of real-world databases as large size, incompleteness and inconsistence of the stored information are taken into account. The methods of the rough set theory (like lower and upper approximations, positive regions and reducts) are used for the solving of this problem. The new discretization algorithm of the continuous attributes is proposed. It essentially increases an overall performance of generalization algorithms and can be applied to processing of real value attributes in large data tables. Also the search algorithm of the significant attributes combined with a stage of discretization is developed. It allows avoiding splitting of continuous domains of insignificant attributes into intervals.
Resumo:
Similar to classic Signal Detection Theory (SDT), recent optimal Binary Signal Detection Theory (BSDT) and based on it Neural Network Assembly Memory Model (NNAMM) can successfully reproduce Receiver Operating Characteristic (ROC) curves although BSDT/NNAMM parameters (intensity of cue and neuron threshold) and classic SDT parameters (perception distance and response bias) are essentially different. In present work BSDT/NNAMM optimal likelihood and posterior probabilities are analytically analyzed and used to generate ROCs and modified (posterior) mROCs, optimal overall likelihood and posterior. It is shown that for the description of basic discrimination experiments in psychophysics within the BSDT a ‘neural space’ can be introduced where sensory stimuli as neural codes are represented and decision processes are defined, the BSDT’s isobias curves can simultaneously be interpreted as universal psychometric functions satisfying the Neyman-Pearson objective, the just noticeable difference (jnd) can be defined and interpreted as an atom of experience, and near-neutral values of biases are observers’ natural choice. The uniformity or no-priming hypotheses, concerning the ‘in-mind’ distribution of false-alarm probabilities during ROC or overall probability estimations, is introduced. The BSDT’s and classic SDT’s sensitivity, bias, their ROC and decision spaces are compared.