3 resultados para Implementation Science
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
(Summary of: Varbanova-Dencheva, K. Intellectual communications and contemporarly technologies. Alternatives of the science libraries. Sofia, Marin Drinov academic publishing house. 2003, 114p. ) The new technologies and the globalization are the factors which have brought essential changes in human society and its environment. The unceasing dynamic changes imposed new strategies for survival and prosperity of institutions and people in the new conditions. The spheres with greatest potential for achieving competition priority are compatible to the fastness of research results implementation in each field of human activity. The extended knowledge requires narrower specialization as well as interdisciplinarity to solve the arising problems. The new research fields and trends are a synthesis of science and high technologies determined by the new discoveries. The present study aims at finding answers to the questions about the place of science library in the dynamic restructuring of research environment. The necessity of transformation of the scientific library’s genetically set functions from a guardian of the achieved knowledge to an active participant in the creation of new knowledge is a natural consequence of the processes and tendencies of the social medium. The priorities of Europe and USA for intensive creation of knowledge economics are at the first place and this requires intensification of that research an integral part of which are the new communications realized at a new technological level.
Resumo:
This paper analyzes difficulties with the introduction of object-oriented concepts in introductory computing education and then proposes a two-language, two-paradigm curriculum model that alleviates such difficulties. Our two-language, two-paradigm curriculum model begins with teaching imperative programming using Python programming language, continues with teaching object-oriented computing using Java, and concludes with teaching object-oriented data structures with Java.
Resumo:
An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.