1 resultado para Imperial Order Daughters of the Empire. Earl Mountbatten Chapter
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (2)
- Archive of European Integration (30)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (3)
- Biodiversity Heritage Library, United States (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Boston University Digital Common (6)
- Brock University, Canada (19)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (30)
- Center for Jewish History Digital Collections (4)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (7)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (2)
- Harvard University (6)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (16)
- Instituto Politécnico do Porto, Portugal (3)
- National Center for Biotechnology Information - NCBI (2)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (42)
- Queensland University of Technology - ePrints Archive (58)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (22)
- Research Open Access Repository of the University of East London. (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad Politécnica de Madrid (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Michigan (541)
- University of Queensland eSpace - Australia (3)
- University of Washington (1)
- WestminsterResearch - UK (1)
Relevância:
Resumo:
First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.