4 resultados para Image foresting transform

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel error-free (infinite-precision) architecture for the fast implementation of 8x8 2-D Discrete Cosine Transform. The architecture uses a new algebraic integer encoding of a 1-D radix-8 DCT that allows the separable computation of a 2-D 8x8 DCT without any intermediate number representation conversions. This is a considerable improvement on previously introduced algebraic integer encoding techniques to compute both DCT and IDCT which eliminates the requirements to approximate the transformation matrix ele- ments by obtaining their exact representations and hence mapping the transcendental functions without any errors. Apart from the multiplication-free nature, this new mapping scheme fits to this algorithm, eliminating any computational or quantization errors and resulting short-word-length and high-speed-design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a method for image recognition on the base of projections. Radon transform gives an opportunity to map image into space of its projections. Projection properties allow constructing informative features on the base of moments that can be successfully used for invariant recognition. Offered approach gives about 91-97% of correct recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.