28 resultados para Hilbert, Espais de
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We survey counterexamples to Hilbert’s Fourteenth Problem, beginning with those of Nagata in the late 1950s, and including recent counterexamples in low dimension constructed with locally nilpotent derivations. Historical framework and pertinent references are provided. We also include 8 important open questions.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
In this paper we study a nonlinear evolution inclusion of subdifferential type in Hilbert spaces. The perturbation term is Hausdorff continuous in the state variable and has closed but not necessarily convex values. Our result is a stochastic generalization of an existence theorem proved by Kravvaritis and Papageorgiou in [6].
Resumo:
Mathematics Subject Classification: 47A56, 47A57,47A63
Resumo:
MSC 2010: 30C60
Resumo:
2000 Mathematics Subject Classification: 14C05, 14L30, 14E15, 14J35.
Resumo:
2000 Mathematics Subject Classification: Primary 14E15; Secondary 14C05,14L30.
Resumo:
2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.
Resumo:
2010 Mathematics Subject Classification: 35Q15, 31A25, 37K10, 35Q58.
Multipliers on Spaces of Functions on a Locally Compact Abelian Group with Values in a Hilbert Space
Resumo:
2000 Mathematics Subject Classification: Primary 43A22, 43A25.
Resumo:
2000 Mathematics Subject Classification: 42A45.
Resumo:
We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.
Resumo:
Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.
Resumo:
We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.