2 resultados para Health Information Infrastructure
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
Micro Electro Mechanical Systems (MEMS) have already revolutionized several industries through miniaturization and cost effective manufacturing capabilities that were never possible before. However, commercially available MEMS products have only scratched the surface of the application areas where MEMS has potential. The complex and highly technical nature of MEMS research and development (R&D) combined with the lack of standards in areas such as design, fabrication and test methodologies, makes creating and supporting a MEMS R&D program a financial and technological challenge. A proper information technology (IT) infrastructure is the backbone of such research and is critical to its success. While the lack of standards and the general complexity in MEMS R&D makes it impossible to provide a “one size fits all” design, a systematic approach, combined with a good understanding of the MEMS R&D environment and the relevant computer-aided design tools, provides a way for the IT architect to develop an appropriate infrastructure.