5 resultados para Grants-in-aid.

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): E.4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper is to determine nq(k, d) for d = dk as nq(k, d) = gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 8 except for (k, q) = (7, 7), (8, 8), (8, 9).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let nq(k, d) denote the smallest value of n for which an [n, k, d]q code exists for given integers k and d with k ≥ 3, 1 ≤ d ≤ q^(k−1) and a prime or a prime power q. The purpose of this note is to show that there exists a series of the functions h3,q, h4,q, ..., hk,q such that nq(k, d) can be expressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.