3 resultados para Geometry of numbers
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper we survey work on and around the following conjecture, which was first stated about 45 years ago: If all the zeros of an algebraic polynomial p (of degree n ≥ 2) lie in a disk with radius r, then, for each zero z1 of p, the disk with center z1 and radius r contains at least one zero of the derivative p′ . Until now, this conjecture has been proved for n ≤ 8 only. We also put the conjecture in a more general framework involving higher order derivatives and sets defined by the zeros of the polynomials.
Resumo:
2000 Mathematics Subject Classification: 53C42, 53C15.
Resumo:
2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.