5 resultados para General Linear Methods

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We build the Conditional Least Squares Estimator of 0 based on the observation of a single trajectory of {Zk,Ck}k, and give conditions ensuring its strong consistency. The particular case of general linear models according to 0=( 0, 0) and among them, regenerative processes, are studied more particularly. In this frame, we may also prove the consistency of the estimator of 0 although it belongs to an asymptotic negligible part of the model, and the asymptotic law of the estimator may also be calculated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

*This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003

Relevância:

40.00% 40.00%

Publicador:

Resumo:

* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65H10.