1 resultado para Gastric Mill
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (20)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (33)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (56)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (21)
- Center for Jewish History Digital Collections (10)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (9)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (10)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (6)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico de Viseu (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (10)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (77)
- Queensland University of Technology - ePrints Archive (100)
- Repositorio Academico Digital UANL (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositorio Institucional de la Universidad Nacional Agraria (44)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (173)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (31)
- Scielo España (2)
- Scientific Open-access Literature Archive and Repository (5)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (13)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (2)
- Universidade do Algarve (1)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (2)
- University of Michigan (90)
- University of Queensland eSpace - Australia (43)
- University of Washington (2)
- USA Library of Congress (1)
- WestminsterResearch - UK (1)
Resumo:
Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.