7 resultados para Fuzzy Expert Data

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An approach for knowledge extraction from the information arriving to the knowledge base input and also new knowledge distribution over knowledge subsets already present in the knowledge base is developed. It is also necessary to realize the knowledge transform into parameters (data) of the model for the following decision-making on the given subset. It is assumed to realize the decision-making with the fuzzy sets’ apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authors analyses questions of the subjective uncertainty and inexactness situations in the moment of using expert information and another questions which are connected with expert information uncertainty by fuzzy sets with rough membership functions in this article. You can find information about integral problems of individual expert marks and about connection among total marks “degree of inexactness” with sensibility of measurement scale. A lot of different situation which are connected with distribution of the function accessory significance and orientation of the concrete take to task decision making are analyses here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a Web-Centric [3] extension to a previously developed glaucoma expert system that will provide access for doctors and patients from any part of the world. Once implemented, this telehealth solution will publish the services of the Glaucoma Expert System on the World Wide Web, allowing patients and doctors to interact with it from their own homes. This web-extension will also allow the expert system itself to be proactive and to send diagnosis alerts to the registered user or doctor and the patient, informing each one of any emergencies, therefore allowing them to take immediate actions. The existing Glaucoma Expert System uses fuzzy logic learning algorithms applied on historical patient data to update and improve its diagnosis rules set. This process, collectively called the learning process, would benefit greatly from a web-based framework that could provide services like patient data transfer and web- based distribution of updated rules [1].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work shows an application of a generalized approach for constructing dilation-erosion adjunctions on fuzzy sets. More precisely, operations on fuzzy quantities and fuzzy numbers are considered. By the generalized approach an analogy with the well known interval computations could be drawn and thus we can define outer and inner operations on fuzzy objects. These operations are found to be useful in the control of bioprocesses, ecology and other domains where data uncertainties exist.