9 resultados para Fundamentals in linear algebra
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
2000 Mathematics Subject Classification: 94B05, 94B15.
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
This paper considers the use of the computer algebra system Mathematica for teaching university-level mathematics subjects. Outlined are basic Mathematica concepts, connected with different mathematics areas: algebra, linear algebra, geometry, calculus and analysis, complex functions, numerical analysis and scientific computing, probability and statistics. The course “Information technologies in mathematics”, which involves the use of Mathematica, is also presented - discussed are the syllabus, aims, approaches and outcomes.
Resumo:
Stochastic arithmetic has been developed as a model for exact computing with imprecise data. Stochastic arithmetic provides confidence intervals for the numerical results and can be implemented in any existing numerical software by redefining types of the variables and overloading the operators on them. Here some properties of stochastic arithmetic are further investigated and applied to the computation of inner products and the solution to linear systems. Several numerical experiments are performed showing the efficiency of the proposed approach.
Resumo:
This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown.
Resumo:
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).
Resumo:
The complex of questions connected with the analysis, estimation and structural-parametrical optimization of dynamic system is considered in this article. Connection of such problems with tasks of control by beams of trajectories is emphasized. The special attention is concentrated on the review and analysis of spent scientific researches, the attention is stressed to their constructability and applied directedness. Efficiency of the developed algorithmic and software is demonstrated on the tasks of modeling and optimization of output beam characteristics in linear resonance accelerators.
Resumo:
This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.