24 resultados para Fundamentals in linear algebra
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
2000 Mathematics Subject Classification: 94B05, 94B15.
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
This paper considers the use of the computer algebra system Mathematica for teaching university-level mathematics subjects. Outlined are basic Mathematica concepts, connected with different mathematics areas: algebra, linear algebra, geometry, calculus and analysis, complex functions, numerical analysis and scientific computing, probability and statistics. The course “Information technologies in mathematics”, which involves the use of Mathematica, is also presented - discussed are the syllabus, aims, approaches and outcomes.
Resumo:
Stochastic arithmetic has been developed as a model for exact computing with imprecise data. Stochastic arithmetic provides confidence intervals for the numerical results and can be implemented in any existing numerical software by redefining types of the variables and overloading the operators on them. Here some properties of stochastic arithmetic are further investigated and applied to the computation of inner products and the solution to linear systems. Several numerical experiments are performed showing the efficiency of the proposed approach.
Resumo:
This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown.
Resumo:
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).
Resumo:
The complex of questions connected with the analysis, estimation and structural-parametrical optimization of dynamic system is considered in this article. Connection of such problems with tasks of control by beams of trajectories is emphasized. The special attention is concentrated on the review and analysis of spent scientific researches, the attention is stressed to their constructability and applied directedness. Efficiency of the developed algorithmic and software is demonstrated on the tasks of modeling and optimization of output beam characteristics in linear resonance accelerators.
Resumo:
This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.
Resumo:
The paper considers vector discrete optimization problem with linear fractional functions of criteria on a feasible set that has combinatorial properties of combinations. Structural properties of a feasible solution domain and of Pareto–optimal (efficient), weakly efficient, strictly efficient solution sets are examined. A relation between vector optimization problems on a combinatorial set of combinations and on a continuous feasible set is determined. One possible approach is proposed in order to solve a multicriteria combinatorial problem with linear- fractional functions of criteria on a set of combinations.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.
Resumo:
We consider a finite state automata based method of solving a system of linear Diophantine equations with coefficients from the set {-1,0,1} and solutions in {0,1}.
Resumo:
Transition P systems are computational models based on basic features of biological membranes and the observation of biochemical processes. In these models, membrane contains objects multisets, which evolve according to given evolution rules. In the field of Transition P systems implementation, it has been detected the necessity to determine whichever time are going to take active evolution rules application in membranes. In addition, to have time estimations of rules application makes possible to take important decisions related to the hardware / software architectures design. In this paper we propose a new evolution rules application algorithm oriented towards the implementation of Transition P systems. The developed algorithm is sequential and, it has a linear order complexity in the number of evolution rules. Moreover, it obtains the smaller execution times, compared with the preceding algorithms. Therefore the algorithm is very appropriate for the implementation of Transition P systems in sequential devices.
Resumo:
Mathematics Subject Classification: 26A33