23 resultados para Fractional Navier-Stokes Equation, Separation of Variables, Adomian Decomposition
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.
Resumo:
This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a \main theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.
Resumo:
We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.
Resumo:
2000 Mathematics Subject Classification: Primary 26A33; Secondary 47G20, 31B05
Resumo:
Mathematics Subject Classification: 26A33
Resumo:
Mathematics Subject Classification: 45G10, 45M99, 47H09
Resumo:
Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09
Resumo:
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11
Resumo:
Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...
Resumo:
2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35
Resumo:
2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05
Resumo:
Mathematics Subject Classification: 26A33, 31B10
Resumo:
MSC 2010: 26A33