1 resultado para Extract-n-Amp
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (4)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (15)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Dalarna University College Electronic Archive (16)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (10)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (12)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (10)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (7)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (5)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (32)
- National Center for Biotechnology Information - NCBI (16)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (27)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (315)
- Queensland University of Technology - ePrints Archive (18)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (212)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (6)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (4)
- University of Michigan (47)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (3)
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.