7 resultados para Extensible Pluggable Architecture Hydra Data
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Никола Вълчанов, Тодорка Терзиева, Владимир Шкуртов, Антон Илиев - Една от основните области на приложения на компютърната информатика е автоматизирането на математическите изчисления. Информационните системи покриват различни области като счетоводство, електронно обучение/тестване, симулационни среди и т. н. Те работят с изчислителни библиотеки, които са специфични за обхвата на системата. Въпреки, че такива системи са перфектни и работят безпогрешно, ако не се поддържат остаряват. В тази работа описваме механизъм, който използва динамично библиотеките за изчисления и взема решение по време на изпълнение (интелигентно или интерактивно) за това как и кога те да се използват. Целта на тази статия е представяне на архитектура за системи, управлявани от изчисления. Тя се фокусира върху ползите от използването на правилните шаблони за дизайн с цел да се осигури разширяемост и намаляване на сложността.
Resumo:
The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.
Resumo:
This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
The paper describes an extension of the cognitive architecture DUAL with a model of visual attention and perception. The goal of this attempt is to account for the construction and the categorization of object and scene representations derived from visual stimuli in the TextWorld microdomain. Low-level parallel computations are combined with an active serial deployment of visual attention enabling the construction of abstract symbolic representations. A limited-capacity short-term visual store holding information across attention shifts forms the core of the model interfacing between the low-level representation of the stimulus and DUAL’s semantic memory. The model is validated by comparing the results of a simulation with real data from an eye movement experiment with human subjects.
Resumo:
In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.
Resumo:
This is an extended version of an article presented at the Second International Conference on Software, Services and Semantic Technologies, Sofia, Bulgaria, 11–12 September 2010.