6 resultados para Entire functions

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

MSC 2010: 33E12, 30A10, 30D15, 30E15

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this paper is (1) to highlight some recent and heretofore unpublished results in the theory of multiplier sequences and (2) to survey some open problems in this area of research. For the sake of clarity of exposition, we have grouped the problems in three subsections, although several of the problems are interrelated. For the reader’s convenience, we have included the pertinent definitions, cited references and related results, and in several instances, elucidated the problems by examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The following problem, suggested by Laguerre’s Theorem (1884), remains open: Characterize all real sequences {μk} k=0...∞ which have the zero-diminishing property; that is, if k=0...n, p(x) = ∑(ak x^k) is any P real polynomial, then k=0...n, p(x) = ∑(μk ak x^k) has no more real zeros than p(x). In this paper this problem is solved under the additional assumption of a weak growth condition on the sequence {μk} k=0...∞, namely lim n→∞ | μn |^(1/n) < ∞. More precisely, it is established that the real sequence {μk} k≥0 is a weakly increasing zerodiminishing sequence if and only if there exists σ ∈ {+1,−1} and an entire function n≥1, Φ(z)= be^(az) ∏(1+ x/αn), a, b ∈ R^1, b =0, αn > 0 ∀n ≥ 1, ∑(1/αn) < ∞, such that µk = (σ^k)/Φ(k), ∀k ≥ 0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deviations of some entire functions of exponential type from real-valued functions and their derivatives are estimated. As approximation metrics we use the Lp-norms and power variations on R. Theorems presented here correspond to the Ganelius and Popov results concerning the one-sided trigonometric approximation of periodic functions (see [4, 5 and 8]). Some related facts were announced in [2, 3, 6 and 7].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34E20, 35L80, 35L15.