14 resultados para Eigenvalue Bounds
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.
Resumo:
We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.
Resumo:
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].
Resumo:
We extend the results in [5] to non-compactly supported perturbations for a class of symmetric first order systems.
Resumo:
The maximal cardinality of a code W on the unit sphere in n dimensions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two methods for obtaining new upper bounds on A(n, s) for some values of n and s. We find new linear programming bounds by suitable polynomials of degrees which are higher than the degrees of the previously known good polynomials due to Levenshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein bounds [11, 12]. In such cases we find the distance distributions of the corresponding feasible maximal spherical codes. Usually this leads to a contradiction showing that such codes do not exist.
Resumo:
Let V be an array. The range query problem concerns the design of data structures for implementing the following operations. The operation update(j,x) has the effect vj ← vj + x, and the query operation retrieve(i,j) returns the partial sum vi + ... + vj. These tasks are to be performed on-line. We define an algebraic model – based on the use of matrices – for the study of the problem. In this paper we establish as well a lower bound for the sum of the average complexity of both kinds of operations, and demonstrate that this lower bound is near optimal – in terms of asymptotic complexity.
Resumo:
Mathematics Subject Classification: 47A56, 47A57,47A63
Resumo:
2000 Mathematics Subject Classification: 06A06, 54E15
Resumo:
MSC subject classification: 65C05, 65U05.
Resumo:
2000 Mathematics Subject Classification: 60J27.
Resumo:
In this note we discuss upper and lower bound for the ruin probability in an insurance model with very heavy-tailed claims and interarrival times.
Resumo:
2002 Mathematics Subject Classification: 35J15, 35J25, 35B05, 35B50
Resumo:
We investigate a recently introduced width measure of planar shapes called sweepwidth and prove a lower bound theorem on the sweepwidth.
Resumo:
2000 Mathematics Subject Classification: 35J70, 35P15.