7 resultados para Education. Scientific Concepts. Teaching Unit. Board Games
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Educational games such as quizzes, quests, puzzles, mazes and logical problems may be modeled as multimedia board games. In the scope of the ADOPTA project1 being under development at the Faculty of Mathematics and Informatics at Sofia University, a formal model for presentation of such educational board games was invented and elaborated. Educational games can be modeled as special board mini-games, with a board of any form and any types of positions. Over defined positions, figures (objects) with certain properties are placed and, next, there are to be defined formal rules for manipulation of these figures and resulted effects. The model has been found to be general enough in order to allow description and execution control of more complex logical problems to be solved by several actions delivered to/by the player according some formal rules and context conditions and, in general, of any learning activities and their workflow. It is used as a base for creation of a software platform providing facilities for easy construction of multimedia board games and their execution. The platform consists of game designer (i.e., a game authoring tool) and game run-time controller communicating each other through game repository. There are created and modeled many examples of educational board games appropriate for didactic purposes, self evaluations, etc., which are supposed to be designed easily by authors with no IT skills and experience. By means of game metadata descriptions, these games are going be included into narrative storyboards and, next, delivered to learners with appropriate profile according their learning style, preferences, etc. Moreover, usage of artificial intelligence agents is planned as well – once as playing virtual opponents of the player or, otherwise, being virtual advisers of the gamer helping him/her in finding the right problem solution within given domain such as discovering a treasure using a location map, finding best tour in a virtual museum, guessing an unknown word in a hangman game, and many others.
Resumo:
Ironically, the “learning of percent” is one of the most problematic aspects of school mathematics. In our view, these difficulties are not associated with the arithmetic aspects of the “percent problems”, but mostly with two methodological issues: firstly, providing students with a simple and accurate understanding of the rationale behind the use of percent, and secondly - overcoming the psychological complexities of the fluent and comprehensive understanding by the students of the sometimes specific wordings of “percent problems”. Before we talk about percent, it is necessary to acquaint students with a much more fundamental and important (regrettably, not covered by the school syllabus) classical concepts of quantitative and qualitative comparison of values, to give students the opportunity to learn the relevant standard terminology and become accustomed to conventional turns of speech. Further, it makes sense to briefly touch on the issue (important in its own right) of different representations of numbers. Percent is just one of the technical, but common forms of data representation: p% = p × % = p × 0.01 = p × 1/100 = p/100 = p × 10-2 "Percent problems” are involved in just two cases: I. The ratio of a variation m to the standard M II. The relative deviation of a variation m from the standard M The hardest and most essential in each specific "percent problem” is not the routine arithmetic actions involved, but the ability to figure out, to clearly understand which of the variables involved in the problem instructions is the standard and which is the variation. And in the first place, this is what teachers need to patiently and persistently teach their students. As a matter of fact, most primary school pupils are not yet quite ready for the lexical specificity of “percent problems”. ....Math teachers should closely, hand in hand with their students, carry out a linguistic analysis of the wording of each problem ... Schoolchildren must firmly understand that a comparison of objects is only meaningful when we speak about properties which can be objectively expressed in terms of actual numerical characteristics. In our opinion, an adequate acquisition of the teaching unit on percent cannot be achieved in primary school due to objective psychological specificities related to this age and because of the level of general training of students. Yet, if we want to make this topic truly accessible and practically useful, it should be taught in high school. A final question to the reader (quickly, please): What is greater: % of e or e% of Pi
Resumo:
Дагмар Рааб Математиката е вълнуваща и забавна. Можем ли да убедим учениците, че това може да стане действителност. Задачите са най-важните инструменти за учителите по математика, когато планират уроците си. Планът трябва да съдържа идеи как да се очертае и как да се жалонира пътят, по който учениците ще стигнат до решението на дадена задача. Учителите не трябва да очакват от учениците си просто да кажат кой е отговорът на задачата, а да ги увлекат в процеса на решаване с подходящи въпроси. Ролята на учителя е да помогне на учениците • да бъдат активни и резултатни при решаването на задачи; • самите те да поставят задачи; • да модифицират задачи; • да откриват закономерности; • да изготвят стратегии за решаване на задачи; • да откриват и изследват различни начини за решаване на задачи; • да намират смислена връзка между математическите си знания и проблеми от ежедневието. В доклада са представени избрани и вече експериментирани примери за това как учители и ученици могат да намерят подходящ път към нов тип преживявания в преподаването и изучаването на училищната математика.
Resumo:
Modern technologies have changed the way of presenting information in archives. This makes it possible to introduce new services, which was unimaginable a few years ago. Digitalization, security and virtual presentation of objects in the sphere of motoring by application of technologies, based on knowledge about how to create digital resources is the theme of this project. The aim of AutoKnow project is to carry out a research and create a multi- media digital archive AutoKnow and Experimental Virtual Motor Laboratory (EVML) with Motor Library (ML) from digital multi-media patterns from a selected group of objects in the sphere of automobile technology, presented by NMU. This makes it possible to widely apply multi-media collections in automobile engineering, teaching, research work in that sphere and serve the interests of a large number of auto-amateurs as well in Bulgaria. The research and development of АutoKnow is in the following mutually related fields: - Creation and annotation of collections of objects in the sphere of automobiles; - Creation, analysis and security of a digital archive AutoKnow; - Design and creation of Digital Motor Library; - Socially-oriented applications in education, scientific studies and Experimental Virtual Motor Laboratory; - Informational System for teaching and testing of knowledge in the sphere of automobiles MindCheck.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
This paper considers the use of the computer algebra system Mathematica for teaching university-level mathematics subjects. Outlined are basic Mathematica concepts, connected with different mathematics areas: algebra, linear algebra, geometry, calculus and analysis, complex functions, numerical analysis and scientific computing, probability and statistics. The course “Information technologies in mathematics”, which involves the use of Mathematica, is also presented - discussed are the syllabus, aims, approaches and outcomes.
Resumo:
The European Leonardo da Vinci Transfer of Innovation project “Teacher training to improve attractiveness and quality of management education through the simulation tool ‘Emerald Forest’” which emphases on using the computer simulation tool for increasing attractiveness of teaching and learning in economics is presented in this paper. The observation of using computer systems and especially serious games in education is provided as well. “Education is not the filling of a pail, but the lighting of a fire” - William Butler Yeats