3 resultados para EXTENDED BASIS-SETS

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problems of formalization of the process of matching different management subjects’ functioning characteristics obtained on the financial flows analysis basis is considered. Formal generalizations for gaining economical security system knowledge bases elements are presented. One of feedback directions establishment between knowledge base of the system of economical security and financial flows database analysis is substantiated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. We have provided several characterizations of the larger class of closed convex sets, Motzkin decomposable, in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed. Another result establishes that a closed convex set is Motzkin decomposable if and only if the set of extreme points of its intersection with the linear subspace orthogonal to its lineality is bounded. We characterize the class of the extended functions whose epigraphs are Motzkin decomposable sets showing, in particular, that these functions attain their global minima when they are bounded from below. Calculus of Motzkin decomposable sets and functions is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic concepts for an interval arithmetic standard are discussed in the paper. Interval arithmetic deals with closed and connected sets of real numbers. Unlike floating-point arithmetic it is free of exceptions. A complete set of formulas to approximate real interval arithmetic on the computer is displayed in section 3 of the paper. The essential comparison relations and lattice operations are discussed in section 6. Evaluation of functions for interval arguments is studied in section 7. The desirability of variable length interval arithmetic is also discussed in the paper. The requirement to adapt the digital computer to the needs of interval arithmetic is as old as interval arithmetic. An obvious, simple possible solution is shown in section 8.