2 resultados para Distance Distribution
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We obtain new combinatorial upper and lower bounds for the potential energy of designs in q-ary Hamming space. Combined with results on reducing the number of all feasible distance distributions of such designs this gives reasonable good bounds. We compute and compare our lower bounds to recently obtained universal lower bounds. Some examples in the binary case are considered.
Resumo:
The maximal cardinality of a code W on the unit sphere in n dimensions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two methods for obtaining new upper bounds on A(n, s) for some values of n and s. We find new linear programming bounds by suitable polynomials of degrees which are higher than the degrees of the previously known good polynomials due to Levenshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein bounds [11, 12]. In such cases we find the distance distributions of the corresponding feasible maximal spherical codes. Usually this leads to a contradiction showing that such codes do not exist.