42 resultados para Discrete polynomial transforms
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Image content interpretation is much dependent on segmentations efficiency. Requirements for the image recognition applications lead to a nessesity to create models of new type, which will provide some adaptation between law-level image processing, when images are segmented into disjoint regions and features are extracted from each region, and high-level analysis, using obtained set of all features for making decisions. Such analysis requires some a priori information, measurable region properties, heuristics, and plausibility of computational inference. Sometimes to produce reliable true conclusion simultaneous processing of several partitions is desired. In this paper a set of operations with obtained image segmentation and a nested partitions metric are introduced.
Resumo:
In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.
Resumo:
∗ Partially supported by INTAS grant 97-1644
Resumo:
We study a class of models used with success in the modelling of climatological sequences. These models are based on the notion of renewal. At first, we examine the probabilistic aspects of these models to afterwards study the estimation of their parameters and their asymptotical properties, in particular the consistence and the normality. We will discuss for applications, two particular classes of alternating renewal processes at discrete time. The first class is defined by laws of sojourn time that are translated negative binomial laws and the second class, suggested by Green is deduced from alternating renewal process in continuous time with sojourn time laws which are exponential laws with parameters α^0 and α^1 respectively.
Resumo:
* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.
Resumo:
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Resumo:
Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).
Resumo:
* Dedicated to the memory of Prof. N. Obreshkoff
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a.
Resumo:
A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.
Resumo:
Mathematics Subject Classification: 44A05, 46F12, 28A78
Resumo:
Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.
Resumo:
Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15
Resumo:
Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90