5 resultados para Directional couplers
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.
Resumo:
In this paper RDPPLan, a model for planning with quantitative resources specified as numerical intervals, is presented. Nearly all existing models of planning with resources require to specify exact values for updating resources modified by actions execution. In other words these models cannot deal with more realistic situations in which the resources quantities are not completely known but are bounded by intervals. The RDPPlan model allow to manage domains more tailored to real world, where preconditions and effects over quantitative resources can be specified by intervals of values, in addition mixed logical/quantitative and pure numerical goals can be posed. RDPPlan is based on non directional search over a planning graph, like DPPlan, from which it derives, it uses propagation rules which have been appropriately extended to the management of resource intervals. The propagation rules extended with resources must verify invariant properties over the planning graph which have been proven by the authors and guarantee the correctness of the approach. An implementation of the RDPPlan model is described with search strategies specifically developed for interval resources.
Resumo:
Иван Гинчев - Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа на C1,1 функциите, се обобщава от скаларни за векторни функции. Доказани са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни оптимизационни задачи с ограничения допускат условия от втори ред изразени чрез посочни производни, което обобщава резултати от [2] и [5].
Resumo:
AMS subject classification: 49J52, 90C30.
Resumo:
2000 Mathematics Subject Classification: 90C46, 90C26, 26B25, 49J52.