13 resultados para Directed acyclic graphs
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
ACM Computing Classification System (1998): J.3.
Resumo:
This article presents the principal results of the Ph.D. thesis Intelligent systems in bioinformatics: mapping and merging anatomical ontologies by Peter Petrov, successfully defended at the St. Kliment Ohridski University of Sofia, Faculty of Mathematics and Informatics, Department of Information Technologies, on 26 April 2013.
Resumo:
This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a \main theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.
Resumo:
We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large girth and their cryptographical applications. It contains new explicit algebraic constructions of in finite families of such graphs. We show that they can be used for the implementation of secure and very fast symmetric encryption algorithms. The symbolic computations technique allow us to create a public key mode for the encryption scheme based on algebraic graphs.
Resumo:
We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.
Resumo:
We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.
Resumo:
2000 Mathematics Subject Classification: 05C35.
Resumo:
ACM Computing Classification System (1998): G.2.2.
Resumo:
Асен Божилов, Недялко Ненов - Нека G е n-върхов граф и редицата от степените на върховете му е d1, d2, . . . , dn, а V(G) е множеството от върховете на G. Степента на върха v бележим с d(v). Най-малкото естествено число r, за което V(G) има r-разлагане V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6 = j такова, че d(v) ≤ n − |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r е означено с ϕ(G). В тази работа доказваме неравенството ...
Resumo:
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having a distinguished or root vertex, labeled 0. The hierarchical product G2 ⊓ G1 of G2 and G1 is a graph with vertex set V2 × V1. Two vertices y2y1 and x2x1 are adjacent if and only if y1x1 ∈ E1 and y2 = x2; or y2x2 ∈ E2 and y1 = x1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb indices of this new operation of graphs are computed. As an application, these topological indices for a class of alkanes are computed. ACM Computing Classification System (1998): G.2.2, G.2.3.
Resumo:
We investigate a recently introduced width measure of planar shapes called sweepwidth and prove a lower bound theorem on the sweepwidth.
Resumo:
2010 Mathematics Subject Classification: 05C38, 05C45.
Resumo:
2010 Mathematics Subject Classification: 05C50.