3 resultados para Detection algorithms

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, due to globalization of the world the size of data set is increasing, it is necessary to discover the knowledge. The discovery of knowledge can be typically in the form of association rules, classification rules, clustering, discovery of frequent episodes and deviation detection. Fast and accurate classifiers for large databases are an important task in data mining. There is growing evidence that integrating classification and association rules mining, classification approaches based on heuristic, greedy search like decision tree induction. Emerging associative classification algorithms have shown good promises on producing accurate classifiers. In this paper we focus on performance of associative classification and present a parallel model for classifier building. For classifier building some parallel-distributed algorithms have been proposed for decision tree induction but so far no such work has been reported for associative classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a novel method for an application of digital image processing, Edge Detection is developed. The contemporary Fuzzy logic, a key concept of artificial intelligence helps to implement the fuzzy relative pixel value algorithms and helps to find and highlight all the edges associated with an image by checking the relative pixel values and thus provides an algorithm to abridge the concepts of digital image processing and artificial intelligence. Exhaustive scanning of an image using the windowing technique takes place which is subjected to a set of fuzzy conditions for the comparison of pixel values with adjacent pixels to check the pixel magnitude gradient in the window. After the testing of fuzzy conditions the appropriate values are allocated to the pixels in the window under testing to provide an image highlighted with all the associated edges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intrusion detection is a critical component of security information systems. The intrusion detection process attempts to detect malicious attacks by examining various data collected during processes on the protected system. This paper examines the anomaly-based intrusion detection based on sequences of system calls. The point is to construct a model that describes normal or acceptable system activity using the classification trees approach. The created database is utilized as a basis for distinguishing the intrusive activity from the legal one using string metric algorithms. The major results of the implemented simulation experiments are presented and discussed as well.