4 resultados para Design experimental
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The development of new, health supporting food of high quality and the optimization of food technological processes today require the application of statistical methods of experimental design. The principles and steps of statistical planning and evaluation of experiments will be explained. By example of the development of a gluten-free rusk (zwieback), which is enriched by roughage compounds the application of a simplex-centroid mixture design will be shown. The results will be illustrated by different graphics.
Resumo:
With the appearance of INTERNET technologies the developers of algorithm animation systems have shifted to build on-line system with the advantages of platform-independence and open accessibility over earlier ones. As a result, there is ongoing research in the re-design and re-evaluation of AAS in order to transform them in task-oriented environments for design of algorithms in on-line mode. The experimental study reported in the present paper contributes in this research.
Resumo:
In this paper the main problems for computer design of materials, which would have predefined properties, with the use of artificial intelligence methods are presented. The DB on inorganic compound properties and the system of DBs on materials for electronics with completely assessed information: phase diagram DB of material systems with semiconducting phases and DB on acousto-optical, electro-optical, and nonlinear optical properties are considered. These DBs are a source of information for data analysis. Using the DBs and artificial intelligence methods we have predicted thousands of new compounds in ternary, quaternary and more complicated chemical systems and estimated some of their properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. The perspectives of computational material design with the use of artificial intelligence methods are considered.
Resumo:
ACM Computing Classification System (1998): K.3.1, K.3.2.