9 resultados para Decision-Making Support Systems
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The problems of the cognitive development of subject “perception” are discussed in the thesis: from the object being studied and means of action till the single system “subject – modus operandi of subject – object”. Problems of increasing adequacy of models of “live” nature are analyzed. The concept of developing decisionmaking support systems as expert systems to decision-making support systems as personal device of a decisionmaker is discussed. The experience of the development of qualitative prediction on the basis of polyvalent dependences, represented by a decision tree, which realizes the concept of “plural subjective determinism”, is analyzed. The examples of applied systems prediction of ecological-economic and social processes are given. The ways of their development are discussed.
Resumo:
The reasons of a restricted applicability of the models of decision making in social and economic systems. 3 basic principles of growth of their adequacy are proposed: "localization" of solutions, direct account of influencing of the individual on process of decision making ("subjectivity of objectivity") and reduction of influencing of the individual psychosomatic characteristics of the subject (" objectivity of subjectivity ") are offered. The principles are illustrated on mathematical models of decision making in ecologically- economic and social systems.
Resumo:
An approach of building distributed decision support systems is proposed. There is defined a framework of a distributed DSS and examined questions of problem formulation and solving using artificial intellectual agents in system core.
Resumo:
This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown.
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
The question of forming aim-oriented description of an object domain of decision support process is outlined. Two main problems of an estimation and evaluation of data and knowledge uncertainty in decision support systems – straight and reverse, are formulated. Three conditions being the formalized criteria of aimoriented constructing of input, internal and output spaces of some decision support system are proposed. Definitions of appeared and hidden data uncertainties on some measuring scale are given.
Resumo:
Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.
Resumo:
An expert system (ES) is a class of computer programs developed by researchers in artificial intelligence. In essence, they are programs made up of a set of rules that analyze information about a specific class of problems, as well as provide analysis of the problems, and, depending upon their design, recommend a course of user action in order to implement corrections. ES are computerized tools designed to enhance the quality and availability of knowledge required by decision makers in a wide range of industries. Decision-making is important for the financial institutions involved due to the high level of risk associated with wrong decisions. The process of making decision is complex and unstructured. The existing models for decision-making do not capture the learned knowledge well enough. In this study, we analyze the beneficial aspects of using ES for decision- making process.
Resumo:
An approach for knowledge extraction from the information arriving to the knowledge base input and also new knowledge distribution over knowledge subsets already present in the knowledge base is developed. It is also necessary to realize the knowledge transform into parameters (data) of the model for the following decision-making on the given subset. It is assumed to realize the decision-making with the fuzzy sets’ apparatus.