3 resultados para Crowd Counting
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In the present paper the results from designing of device, which is a part of the automated information system for counting, reporting and documenting the quantity of produced bottles in a factory for glass processing are presented. The block diagram of the device is given. The introduced system can be applied in other discrete productions for counting of the quantity of bottled production.
Resumo:
In this paper, we present an innovative topic segmentation system based on a new informative similarity measure that takes into account word co-occurrence in order to avoid the accessibility to existing linguistic resources such as electronic dictionaries or lexico-semantic databases such as thesauri or ontology. Topic segmentation is the task of breaking documents into topically coherent multi-paragraph subparts. Topic segmentation has extensively been used in information retrieval and text summarization. In particular, our architecture proposes a language-independent topic segmentation system that solves three main problems evidenced by previous research: systems based uniquely on lexical repetition that show reliability problems, systems based on lexical cohesion using existing linguistic resources that are usually available only for dominating languages and as a consequence do not apply to less favored languages and finally systems that need previously existing harvesting training data. For that purpose, we only use statistics on words and sequences of words based on a set of texts. This solution provides a flexible solution that may narrow the gap between dominating languages and less favored languages thus allowing equivalent access to information.
Resumo:
We develop a simplified implementation of the Hoshen-Kopelman cluster counting algorithm adapted for honeycomb networks. In our implementation of the algorithm we assume that all nodes in the network are occupied and links between nodes can be intact or broken. The algorithm counts how many clusters there are in the network and determines which nodes belong to each cluster. The network information is stored into two sets of data. The first one is related to the connectivity of the nodes and the second one to the state of links. The algorithm finds all clusters in only one scan across the network and thereafter cluster relabeling operates on a vector whose size is much smaller than the size of the network. Counting the number of clusters of each size, the algorithm determines the cluster size probability distribution from which the mean cluster size parameter can be estimated. Although our implementation of the Hoshen-Kopelman algorithm works only for networks with a honeycomb (hexagonal) structure, it can be easily changed to be applied for networks with arbitrary connectivity between the nodes (triangular, square, etc.). The proposed adaptation of the Hoshen-Kopelman cluster counting algorithm is applied to studying the thermal degradation of a graphene-like honeycomb membrane by means of Molecular Dynamics simulation with a Langevin thermostat. ACM Computing Classification System (1998): F.2.2, I.5.3.