8 resultados para Connected
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper is about two fundamental problems in the field of computer science. Solving these two problems is important because it has to do with the creation of Artificial Intelligence. In fact, these two problems are not very famous because they have not many applications outside the field of Artificial Intelligence. In this paper we will give a solution neither of the first nor of the second problem. Our goal will be to formulate these two problems and to give some ideas for their solution.
Resumo:
* The author is supported by a Return Fellowship from the Alexander von Humboldt Foundation.
Resumo:
Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...
Resumo:
Special nets which characterize Cartesian, geodesic, Chebyshevian, geodesic- Chebyshevian and Chebyshevian-geodesic compositions are introduced. Con- ditions for the coefficients of the connectedness in the parameters of these special nets are found.
Resumo:
∗ Financial support of the Grant Agency of the Czech Republic under the grant no 201/96/0119 and of the Grant Agency of the Charles University under the grant GAUK 149 is gratefully acknowledged.
Resumo:
Let in even-dimensional a±nely connected space without a torsion A2m be given a composition Xm£Xm by the affinor a¯ ®. The affinor b¯ ®, determined with the help of the eigen-vectors of the matrix (a¯ ®), de¯nes the second composition Ym £ Y m. Conjugate compositions are introduced by the condition: the a±nors of any of both compositions transform the vectors from the one position of the composition, generated by the other a±nor, in the vectors from the another its position. It is proved that the compositions de¯ne by a±nors a¯ ® and b¯ ® are conjugate. It is proved also that if the composition Xm£Xm is Cartesian and composition Ym£Y m is Cartesian or chebyshevian, or geodesic than the space A2m is affine.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
2000 Mathematics Subject Classification: 53B05, 53B99.