17 resultados para Conformal invariants
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
We consider a 3-dimensional Riemannian manifold V with a metric g and an a±nor structure q. The local coordinates of these tensors are circulant matrices. In V we define an almost conformal transformation. Using that definition we construct an infinite series of circulant metrics which are successively almost conformaly related. In this case we get some properties.
Resumo:
2000 Mathematics Subject Classification: 16R10, 16R30.
Resumo:
2000 Mathematics Subject Classification: Primary 20F55, 13F20; Secondary 14L30.
Resumo:
Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.
Resumo:
Research partially supported by a grant of Caja de Ahorros del Mediterraneo.
Resumo:
∗The author was partially supported by M.U.R.S.T. Progr. Nazionale “Problemi Non Lineari...”
Resumo:
Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.
Resumo:
Certain curvature properties and scalar invariants of the mani- folds belonging to one of the main classes almost contact manifolds with Norden metric are considered. An example illustrating the obtained results is given and studied.
Resumo:
We consider quadrate matrices with elements of the first row members of an arithmetic progression and of the second row members of other arithmetic progression. We prove the set of these matrices is a group. Then we give a parameterization of this group and investigate about some invariants of the corresponding geometry. We find an invariant of any two points and an invariant of any sixth points. All calculations are made by Maple.
Resumo:
The isomorphism problem of arbitrary algebraic structures plays always a central role in the study of a given algebraic object. In this paper we give the first investigations and also some basic results on the isomorphism problem of commutative group algebras in Bulgaria.
Resumo:
Let a commutative ring R be a direct product of indecomposable rings with identity and let G be a finite abelian p-group. In the present paper we give a complete system of invariants of the group algebra RG of G over R when p is an invertible element in R. These investigations extend some classical results of Berman (1953 and 1958), Sehgal (1970) and Karpilovsky (1984) as well as a result of Mollov (1986).
Resumo:
In this paper we give the first investigations and also some basic results on the unit groups of commutative group algebras in Bulgaria. These investigations continue some classical results. Namely, it is supposed that the cardinality of the starting group is arbitrary.
Resumo:
In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88. Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.
Resumo:
2000 Mathematics Subject Classification: 14H50.