20 resultados para Concept-based Retrieval
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Our research explores the possibility of categorizing webpages and webpage genre by structure or layout. Based on our results, we believe that webpage structure could play an important role, along with textual and visual keywords, in webpage categorization and searching.
Resumo:
In this paper a review of the most used MPEG-7 descriptors are presented. Some considerations for choosing the most proper descriptor for a particular image or video data set are outlined.
Resumo:
More and more researchers have realized that ontologies will play a critical role in the development of the Semantic Web, the next generation Web in which content is not only consumable by humans, but also by software agents. The development of tools to support ontology management including creation, visualization, annotation, database storage, and retrieval is thus extremely important. We have developed ImageSpace, an image ontology creation and annotation tool that features (1) full support for the standard web ontology language DAML+OIL; (2) image ontology creation, visualization, image annotation and display in one integrated framework; (3) ontology consistency assurance; and (4) storing ontologies and annotations in relational databases. It is expected that the availability of such a tool will greatly facilitate the creation of image repositories as islands of the Semantic Web.
Resumo:
Electronic publishing exploits numerous possibilities to present or exchange information and to communicate via most current media like the Internet. By utilizing modern Web technologies like Web Services, loosely coupled services, and peer-to-peer networks we describe the integration of an intelligent business news presentation and distribution network. Employing semantics technologies enables the coupling of multinational and multilingual business news data on a scalable international level and thus introduce a service quality that is not achieved by alternative technologies in the news distribution area so far. Architecturally, we identified the loose coupling of existing services as the most feasible way to address multinational and multilingual news presentation and distribution networks. Furthermore we semantically enrich multinational news contents by relating them using AI techniques like the Vector Space Model. Summarizing our experiences we describe the technical integration of semantics and communication technologies in order to create a modern international news network.
Resumo:
Due to the rapid growth of the number of digital media elements like image, video, audio, graphics on Internet, there is an increasing demand for effective search and retrieval techniques. Recently, many search engines have made image search as an option like Google, AlltheWeb, AltaVista, Freenet. In addition to this, Ditto, Picsearch, can search only the images on Internet. There are also other domain specific search engines available for graphics and clip art, audio, video, educational images, artwork, stock photos, science and nature [www.faganfinder.com/img]. These entire search engines are directory based. They crawls the entire Internet and index all the images in certain categories. They do not display the images in any particular order with respect to the time and context. With the availability of MPEG-7, a standard for describing multimedia content, it is now possible to store the images with its metadata in a structured format. This helps in searching and retrieving the images. The MPEG-7 standard uses XML to describe the content of multimedia information objects. These objects will have metadata information in the form of MPEG-7 or any other similar format associated with them. It can be used in different ways to search the objects. In this paper we propose a system, which can do content based image retrieval on the World Wide Web. It displays the result in user-defined order.
Resumo:
In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.
Resumo:
An approach to building a CBIR-system for searching computer tomography images using the methods of wavelet-analysis is presented in this work. The index vectors are constructed on the basis of the local features of the image and on their positions. The purpose of the proposed system is to extract visually similar data from the individual personal records and from analogous analysis of other patients.
Resumo:
Similar to Genetic algorithm, Evolution strategy is a process of continuous reproduction, trial and selection. Each new generation is an improvement on the one that went before. This paper presents two different proposals based on the vector space model (VSM) as a traditional model in information Retrieval (TIR). The first uses evolution strategy (ES). The second uses the document centroid (DC) in query expansion technique. Then the results are compared; it was noticed that ES technique is more efficient than the other methods.
Resumo:
Traditional content-based filtering methods usually utilize text extraction and classification techniques for building user profiles as well as for representations of contents, i.e. item profiles. These methods have some disadvantages e.g. mismatch between user profile terms and item profile terms, leading to low performance. Some of the disadvantages can be overcome by incorporating a common ontology which enables representing both the users' and the items' profiles with concepts taken from the same vocabulary. We propose a new content-based method for filtering and ranking the relevancy of items for users, which utilizes a hierarchical ontology. The method measures the similarity of the user's profile to the items' profiles, considering the existing of mutual concepts in the two profiles, as well as the existence of "related" concepts, according to their position in the ontology. The proposed filtering algorithm computes the similarity between the users' profiles and the items' profiles, and rank-orders the relevant items according to their relevancy to each user. The method is being implemented in ePaper, a personalized electronic newspaper project, utilizing a hierarchical ontology designed specifically for classification of News items. It can, however, be utilized in other domains and extended to other ontologies.
Resumo:
This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.
Resumo:
This paper considers the problem of concept generalization in decision-making systems where such features of real-world databases as large size, incompleteness and inconsistence of the stored information are taken into account. The methods of the rough set theory (like lower and upper approximations, positive regions and reducts) are used for the solving of this problem. The new discretization algorithm of the continuous attributes is proposed. It essentially increases an overall performance of generalization algorithms and can be applied to processing of real value attributes in large data tables. Also the search algorithm of the significant attributes combined with a stage of discretization is developed. It allows avoiding splitting of continuous domains of insignificant attributes into intervals.
Resumo:
In this paper a new method for image retrieval using high level color semantic features is proposed. It is based on extraction of low level color characteristics and their conversion into high level semantic features using Johannes Itten theory of color, Dempster-Shafer theory of evidence and fuzzy production rules.
Resumo:
This paper deals with the classification of news items in ePaper, a prototype system of a future personalized newspaper service on a mobile reading device. The ePaper system aggregates news items from various news providers and delivers to each subscribed user (reader) a personalized electronic newspaper, utilizing content-based and collaborative filtering methods. The ePaper can also provide users "standard" (i.e., not personalized) editions of selected newspapers, as well as browsing capabilities in the repository of news items. This paper concentrates on the automatic classification of incoming news using hierarchical news ontology. Based on this classification on one hand, and on the users' profiles on the other hand, the personalization engine of the system is able to provide a personalized paper to each user onto her mobile reading device.
Resumo:
As the volume of image data and the need of using it in various applications is growing significantly in the last days it brings a necessity of retrieval efficiency and effectiveness. Unfortunately, existing indexing methods are not applicable to a wide range of problem-oriented fields due to their operating time limitations and strong dependency on the traditional descriptors extracted from the image. To meet higher requirements, a novel distance-based indexing method for region-based image retrieval has been proposed and investigated. The method creates premises for considering embedded partitions of images to carry out the search with different refinement or roughening level and so to seek the image meaningful content.
Resumo:
One of the ultimate aims of Natural Language Processing is to automate the analysis of the meaning of text. A fundamental step in that direction consists in enabling effective ways to automatically link textual references to their referents, that is, real world objects. The work presented in this paper addresses the problem of attributing a sense to proper names in a given text, i.e., automatically associating words representing Named Entities with their referents. The method for Named Entity Disambiguation proposed here is based on the concept of semantic relatedness, which in this work is obtained via a graph-based model over Wikipedia. We show that, without building the traditional bag of words representation of the text, but instead only considering named entities within the text, the proposed method achieves results competitive with the state-of-the-art on two different datasets.