5 resultados para Computational geometry
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.
Resumo:
Предложена структурная модель полутонового изображения. Структурная модель предполагает инвариантное относительно аффинных преобразований описание выделенных в изображении объектов. Форма объекта полностью определяет его описание и представлена его граничным контуром и функцией оптической плотности, которая определена в пределах этого контура. Предложено определение контура полутонового изображения как последовательности, состоящей из отрезков прямых и дуг кривых, причем эти отрезки прямых и дуги кривых являются особыми линиями поверхности, которая соответствует полутоновому изображению. Рассматривается пример использования структурной модели в процессе обработки полутоновых изображений медицинских препаратов, полученных по методу Кирлиан.
Resumo:
* A preliminary version of this paper was presented at XI Encuentros de Geometr´ia Computacional, Santander, Spain, June 2005.
Resumo:
We consider the problems of finding two optimal triangulations of a convex polygon: MaxMin area and MinMax area. These are the triangulations that maximize the area of the smallest area triangle in a triangulation, and respectively minimize the area of the largest area triangle in a triangulation, over all possible triangulations. The problem was originally solved by Klincsek by dynamic programming in cubic time [2]. Later, Keil and Vassilev devised an algorithm that runs in O(n^2 log n) time [1]. In this paper we describe new geometric findings on the structure of MaxMin and MinMax Area triangulations of convex polygons in two dimensions and their algorithmic implications. We improve the algorithm’s running time to quadratic for large classes of convex polygons. We also present experimental results on MaxMin area triangulation.