5 resultados para Computational Delay-Time
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2010 Mathematics Subject Classification: 60J80.
Resumo:
We consider an uncertain version of the scheduling problem to sequence set of jobs J on a single machine with minimizing the weighted total flow time, provided that processing time of a job can take on any real value from the given closed interval. It is assumed that job processing time is unknown random variable before the actual occurrence of this time, where probability distribution of such a variable between the given lower and upper bounds is unknown before scheduling. We develop the dominance relations on a set of jobs J. The necessary and sufficient conditions for a job domination may be tested in polynomial time of the number n = |J| of jobs. If there is no a domination within some subset of set J, heuristic procedure to minimize the weighted total flow time is used for sequencing the jobs from such a subset. The computational experiments for randomly generated single-machine scheduling problems with n ≤ 700 show that the developed dominance relations are quite helpful in minimizing the weighted total flow time of n jobs with uncertain processing times.
Resumo:
We consider the problems of finding two optimal triangulations of a convex polygon: MaxMin area and MinMax area. These are the triangulations that maximize the area of the smallest area triangle in a triangulation, and respectively minimize the area of the largest area triangle in a triangulation, over all possible triangulations. The problem was originally solved by Klincsek by dynamic programming in cubic time [2]. Later, Keil and Vassilev devised an algorithm that runs in O(n^2 log n) time [1]. In this paper we describe new geometric findings on the structure of MaxMin and MinMax Area triangulations of convex polygons in two dimensions and their algorithmic implications. We improve the algorithm’s running time to quadratic for large classes of convex polygons. We also present experimental results on MaxMin area triangulation.
Resumo:
Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.
Resumo:
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11