10 resultados para Collectionwise Normality
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: 54C10, 54D15, 54G12.
Resumo:
2000 Mathematics Subject Classification: 47B47, 47B10, 47A30.
Resumo:
We study a class of models used with success in the modelling of climatological sequences. These models are based on the notion of renewal. At first, we examine the probabilistic aspects of these models to afterwards study the estimation of their parameters and their asymptotical properties, in particular the consistence and the normality. We will discuss for applications, two particular classes of alternating renewal processes at discrete time. The first class is defined by laws of sojourn time that are translated negative binomial laws and the second class, suggested by Green is deduced from alternating renewal process in continuous time with sojourn time laws which are exponential laws with parameters α^0 and α^1 respectively.
Resumo:
In this paper, we indicate how integer-valued autoregressive time series Ginar(d) of ordre d, d ≥ 1, are simple functionals of multitype branching processes with immigration. This allows the derivation of a simple criteria for the existence of a stationary distribution of the time series, thus proving and extending some results by Al-Osh and Alzaid [1], Du and Li [9] and Gauthier and Latour [11]. One can then transfer results on estimation in subcritical multitype branching processes to stationary Ginar(d) and get consistency and asymptotic normality for the corresponding estimators. The technique covers autoregressive moving average time series as well.
Resumo:
2000 Mathematics Subject Classification: 14H50.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classi cation: 60J80.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05
Resumo:
This study is focused on the comparison and modification of different estimates arising in the branching processes. Simulations of models with or without migration are put through. Due to the complexity of the computations the algorithms are designed with the language of technical computing MATLAB. Using the simulations, estimates of the o spring mean of the generated processes are calculated. It is well known in the literature that under certain conditions the asymptotic distribution of the estimates is proved to be normal. Using the asymptotic normality a modified method of maximum likelihood is proposed. The aim is to obtain trimmed maximum likelihood estimates based on several sample paths with the same number of generations. Thus in a natural way the observations, inconsistent with the aprior information about the asymptotic normality are excluded from the model. The computation of the standard error allows the comparison of different types of estimates.
Resumo:
2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.