5 resultados para Chain Split and Computations in Practical Rule Mining
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
A novel association rule mining algorithm is composed, using the unit cube chain decomposition structures introduced in [HAN, 1966; TON, 1976]. [HAN, 1966] established the chain split theory. [TON, 1976] invented an excellent chain computation framework which brings chain split into the practical domain. We integrate these technologies around the rule mining procedures. Effectiveness is related to the intention of low complexity of rules mined. Complexity of the procedure composed is complementary to the known Apriori algorithm which is defacto standard in rule mining area.
Resumo:
Prognostic procedures can be based on ranked linear models. Ranked regression type models are designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors. Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts' opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a line which preserve a given set of relations in the best manner possible. Ranked models can be designed through the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked relations cannot be well represented by one ranked model. Decomposition of global model into a family of local ranked models could improve representation. A procedures of ranked models decomposition is described in this paper.
Resumo:
The concept of knowledge is the central one used when solving the various problems of data mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of modern logic: the inductive inference and the deductive inference. The first one is used for extracting the knowledge from the data. The second is applied when the knowledge is used for calculation of the goal attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite predicates represented by logical vectors and matrices.
Resumo:
Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.
Resumo:
This work presents a model for development of project proposals by students as an approach to teaching information technology while promoting entrepreneurship and reflection. In teams of 3 to 5 participants, students elaborate a project proposal on a topic they have negotiated with each other and with the teacher. The project domain is related to the practical application of state-of-theart information technology in areas of substantial public interest or of immediate interest to the participants. This gives them ample opportunities for reflection not only on technical but also on social, economic, environmental and other dimensions of information technology. This approach has long been used with students of different years and programs of study at the Faculty of Mathematics and Informatics, Plovdiv University “Paisiy Hilendarski”. It has been found to develop all eight key competences for lifelong learning set forth in the Reference Framework and procedural skills required in real life.