6 resultados para Capacitated clustering
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In data mining, efforts have focused on finding methods for efficient and effective cluster analysis in large databases. Active themes of research focus on the scalability of clustering methods, the effectiveness of methods for clustering complex shapes and types of data, high-dimensional clustering techniques, and methods for clustering mixed numerical and categorical data in large databases. One of the most accuracy approach based on dynamic modeling of cluster similarity is called Chameleon. In this paper we present a modified hierarchical clustering algorithm that used the main idea of Chameleon and the effectiveness of suggested approach will be demonstrated by the experimental results.
Resumo:
The purpose of this paper is to explain the notion of clustering and a concrete clustering method- agglomerative hierarchical clustering algorithm. It shows how a data mining method like clustering can be applied to the analysis of stocks, traded on the Bulgarian Stock Exchange in order to identify similar temporal behavior of the traded stocks. This problem is solved with the aid of a data mining tool that is called XLMiner™ for Microsoft Excel Office.
Resumo:
A new distance function to compare arbitrary partitions is proposed. Clustering of image collections and image segmentation give objects to be matched. Offered metric intends for combination of visual features and metadata analysis to solve a semantic gap between low-level visual features and high-level human concept.
Resumo:
In a paper the method of complex systems and processes clustering based use of genetic algorithm is offered. The aspects of its realization and shaping of fitness-function are considered. The solution of clustering task of Ukraine areas on socio-economic indexes is represented and comparative analysis with outcomes of classical methods is realized.
Resumo:
2000 Mathematics Subject Classification: 62H30
Resumo:
In this paper a Variable Neighborhood Search (VNS) algorithm for solving the Capacitated Single Allocation Hub Location Problem (CSAHLP) is presented. CSAHLP consists of two subproblems; the first is choosing a set of hubs from all nodes in a network, while the other comprises finding the optimal allocation of non-hubs to hubs when a set of hubs is already known. The VNS algorithm was used for the first subproblem, while the CPLEX solver was used for the second. Computational results demonstrate that the proposed algorithm has reached optimal solutions on all 20 test instances for which optimal solutions are known, and this in short computational time.