11 resultados para CURVE SINGULARITIES

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some results on the formation of singularities for C^1 - solutions of the quasi-linear N × N strictly hyperbolic system Ut + A(U )Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions (weaker than genuine non-linearity), we prove that the first order derivative of the solution blows-up in finite time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ This research is partially supported by the Bulgarian National Science Fund under contract MM-403/9

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of the object contours in the image as sequences of digital straight segments and/or digital curve arcs is considered in this article. The definitions of digital straight segments and of digital curve arcs are proposed. The methods and programs to recognize the object contours are represented. The algorithm to recognize the digital straight segments is formulated in terms of the growing pyramidal networks taking into account the conceptual model of memory and identification (Rabinovich [4]).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Work is partially supported by the Lithuanian State Science and Studies Foundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35S15, 35J70, 35J40, 38J40

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35L80

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the proof of Lemma 3.1 in [1] we need to show that we may take the two points p and q with p ≠ q such that p+q+(b-2)g21(C′)∼2(q1+… +qb-1) where q1,…,qb-1 are points of C′, but in the paper [1] we did not show that p ≠ q. Moreover, we hadn't been able to prove this using the method of our paper [1]. So we must add some more assumption to Lemma 3.1 and rewrite the statements of our paper after Lemma 3.1. The following is the correct version of Lemma 3.1 in [1] with its proof.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant ϰ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker [11]. Next, we describe sets of perturbations V for which the Fermi Golden Rule is valid at each embedded eigenvalue of H; these sets turn out to be dense in various suitable topologies. Finally, we assume that V decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair (H+V, H), and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 33C45, 40G05