36 resultados para CONVEX-SETS
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
* This work was supported by the CNR while the author was visiting the University of Milan.
Resumo:
Dedicated to the memory of our colleague Vasil Popov January 14, 1942 – May 31, 1990 * Partially supported by ISF-Center of Excellence, and by The Hermann Minkowski Center for Geometry at Tel Aviv University, Israel
Resumo:
Theodore Motzkin proved, in 1936, that any polyhedral convex set can be expressed as the (Minkowski) sum of a polytope and a polyhedral convex cone. We have provided several characterizations of the larger class of closed convex sets, Motzkin decomposable, in finite dimensional Euclidean spaces which are the sum of a compact convex set with a closed convex cone. These characterizations involve different types of representations of closed convex sets as the support functions, dual cones and linear systems whose relationships are also analyzed. The obtaining of information about a given closed convex set F and the parametric linear optimization problem with feasible set F from each of its different representations, including the Motzkin decomposition, is also discussed. Another result establishes that a closed convex set is Motzkin decomposable if and only if the set of extreme points of its intersection with the linear subspace orthogonal to its lineality is bounded. We characterize the class of the extended functions whose epigraphs are Motzkin decomposable sets showing, in particular, that these functions attain their global minima when they are bounded from below. Calculus of Motzkin decomposable sets and functions is provided.
Resumo:
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.
Resumo:
We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.
Resumo:
2000 Mathematics Subject Classification: 52A10.
Resumo:
Information extraction or knowledge discovery from large data sets should be linked to data aggregation process. Data aggregation process can result in a new data representation with decreased number of objects of a given set. A deterministic approach to separable data aggregation means a lesser number of objects without mixing of objects from different categories. A statistical approach is less restrictive and allows for almost separable data aggregation with a low level of mixing of objects from different categories. Layers of formal neurons can be designed for the purpose of data aggregation both in the case of deterministic and statistical approach. The proposed designing method is based on minimization of the of the convex and piecewise linear (CPL) criterion functions.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
This work is supported by the Hungarian Scientific Research Fund (OTKA), grant T042706.
Resumo:
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).
Resumo:
This paper was extensively circulated in manuscript form beginning in the Summer of 1989. It is being published here for the first time in its original form except for minor corrections, updated references and some concluding comments.
Resumo:
We prove that in some classes of optimization problems, like lower semicontinuous functions which are bounded from below, lower semi-continuous or continuous functions which are bounded below by a coercive function and quasi-convex continuous functions with the topology of the uniform convergence, the complement of the set of well-posed problems is σ-porous. These results are obtained as realization of a theorem extending a variational principle of Ioffe-Zaslavski.
Resumo:
∗ Research partially supported by INTAS grant 97-1644
Resumo:
We discuss functions f : X × Y → Z such that sets of the form f (A × B) have non-empty interiors provided that A and B are non-empty sets of second category and have the Baire property.