14 resultados para COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper the main problems for computer design of materials, which would have predefined properties, with the use of artificial intelligence methods are presented. The DB on inorganic compound properties and the system of DBs on materials for electronics with completely assessed information: phase diagram DB of material systems with semiconducting phases and DB on acousto-optical, electro-optical, and nonlinear optical properties are considered. These DBs are a source of information for data analysis. Using the DBs and artificial intelligence methods we have predicted thousands of new compounds in ternary, quaternary and more complicated chemical systems and estimated some of their properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. The perspectives of computational material design with the use of artificial intelligence methods are considered.
Resumo:
Beginning from 1991, Russian (initially Soviet) Association for Artificial Intelligence (RAAI) publishes the own journal ‘News of Artificial Intelligence’. The journal is founded on the initiative of the famous specialist in the field of Artificial Intelligence (AI), the first president of Soviet Association for Artificial Intelligence, the academician of Russian Academy of Natural Science (RANS), doctor of technical sciences (d.t.s.), professor D.A. Pospelov, which from 1991 up to 2001 was its main editor.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
* This publication is partially supported by the KT-DigiCult-Bg project.
Resumo:
Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.
Resumo:
Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
This paper is about two fundamental problems in the field of computer science. Solving these two problems is important because it has to do with the creation of Artificial Intelligence. In fact, these two problems are not very famous because they have not many applications outside the field of Artificial Intelligence. In this paper we will give a solution neither of the first nor of the second problem. Our goal will be to formulate these two problems and to give some ideas for their solution.
Resumo:
In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.
Resumo:
The paper presents basic notions and scientific achievements in the field of program transformations, describes usage of these achievements both in the professional activity (when developing optimizing and unparallelizing compilers) and in the higher education. It also analyzes main problems in this area. The concept of control of program transformation information is introduced in the form of specialized knowledge bank on computer program transformations to support the scientific research, education and professional activity in the field. The tasks that are solved by the knowledge bank are formulated. The paper is intended for experts in the artificial intelligence, optimizing compilation, postgraduates and senior students of corresponding specialties; it may be also interesting for university lecturers and instructors.
Resumo:
* The work is partially suported by Russian Foundation for Basic Studies (grant 02-01-00466).
Resumo:
Bulgarian and world computer science lost a prominent colleague: Dimitar Petrov Shishkov 22th January 1939, Varna – 8th March 2004, Sofia D. Shishkov graduated mathematics at Sofia University in 1962. In the last year of his studies he started a specialization as a programmer at the Joint Institute of Nuclear Research – Dubna which lasted three years. Then he worked at the Institute of Mathematics for two years. In 1966 D. Shishkov together with a group of experts transferred to the newly created Central Laboratory for Information Technologies. In 1976 he defended his PhD dissertation. He has been an associate professor in computer science at Sofia University since 1985 and a professor in computer science since 2000. His scientific interests and results were in the fields of computer architectures, computational linguistics, artificial intelligence, numerical methods, data structures, etc. He was remarkable with his teaching activities. D. Shishkov was the creator of high-quality software for the first Bulgarian electronic calculator “ELKA” – one of the first calculators in the world as well as for the series of next calculators and for specialized minicomputers. He was the initiator of the international project “Computerization of the natural languages”. He was a member of a range of international scientific organizations. Among his numerous activities was the organization of the I-st Programming competition in 1979. D. Shishkov was the initiator of sport dancing in Bulgaria (1967) and founder of the first sport-dancing high school education in the world. D. Shishkov was a highly accomplished person with a diversity of interests, with a developed social responsibility and accuracy in his work. In 1996 D. Shishkov was awarded with the International Prize ITHEA for outstanding achievements in the field of Information Theories and Applications. We are grateful to D. Shishkov for the chance to work together with him for establishment and development of IJ ITA.
Resumo:
This paper presents the concepts of the intelligent system for aiding of the module assembly technology. The first part of this paper presents a project of intelligent support system for computer aided assembly process planning. The second part includes a coincidence description of the chosen aspects of implementation of this intelligent system using technologies of artificial intelligence (artificial neural networks, fuzzy logic, expert systems and genetic algorithms).
Resumo:
In this paper a prior knowledge representation for Artificial General Intelligence is proposed based on fuzzy rules using linguistic variables. These linguistic variables may be produced by neural network. Rules may be used for generation of basic emotions – positive and negative, which influence on planning and execution of behavior. The representation of Three Laws of Robotics as such prior knowledge is suggested as highest level of motivation in AGI.