13 resultados para CHAIN BRANCHING DISTRIBUTION
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
Multitype branching processes (MTBP) model branching structures, where the nodes of the resulting tree are particles of different types. Usually such a process is not observable in the sense of the whole tree, but only as the “generation” at a given moment in time, which consists of the number of particles of every type. This requires an EM-type algorithm to obtain a maximum likelihood (ML) estimate of the parameters of the branching process. Using a version of the inside-outside algorithm for stochastic context-free grammars (SCFG), such an estimate could be obtained for the offspring distribution of the process.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60J85, 62P10, 92D25.
Resumo:
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
Resumo:
The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching processes are built up from single-line processes, whereas the regular ones are mixtures of left-tail trivial processes with a Poisson family structure.
Resumo:
In this paper, we indicate how integer-valued autoregressive time series Ginar(d) of ordre d, d ≥ 1, are simple functionals of multitype branching processes with immigration. This allows the derivation of a simple criteria for the existence of a stationary distribution of the time series, thus proving and extending some results by Al-Osh and Alzaid [1], Du and Li [9] and Gauthier and Latour [11]. One can then transfer results on estimation in subcritical multitype branching processes to stationary Ginar(d) and get consistency and asymptotic normality for the corresponding estimators. The technique covers autoregressive moving average time series as well.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.
Resumo:
2000 Mathematics Subject Classification: Primary 60J80, Secondary 62F12, 60G99.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62P05.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05
Resumo:
This study is focused on the comparison and modification of different estimates arising in the branching processes. Simulations of models with or without migration are put through. Due to the complexity of the computations the algorithms are designed with the language of technical computing MATLAB. Using the simulations, estimates of the o spring mean of the generated processes are calculated. It is well known in the literature that under certain conditions the asymptotic distribution of the estimates is proved to be normal. Using the asymptotic normality a modified method of maximum likelihood is proposed. The aim is to obtain trimmed maximum likelihood estimates based on several sample paths with the same number of generations. Thus in a natural way the observations, inconsistent with the aprior information about the asymptotic normality are excluded from the model. The computation of the standard error allows the comparison of different types of estimates.