4 resultados para C-XSC

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C++ class library C-XSC for scientific computing has been extended with the possibility to compute scalar products with selectable accuracy in version 2.3.0. In previous versions, scalar products have always been computed exactly with the help of the so-called long accumulator. Additionally, optimized floating point computation of matrix and vector operations using BLAS-routines are added in C-XSC version 2.4.0. In this article the algorithms used and their implementations, as well as some potential pitfalls in the compilation, are described in more detail. Additionally, the theoretical background of the employed DotK algorithm and the necessary modifications of the concrete implementation in C-XSC are briefly explained. Run-time tests and numerical examples are presented as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports on a new software for solving linear systems involving affine-linear dependencies between complex-valued interval parameters. We discuss the implementation of a parametric residual iteration for linear interval systems by advanced communication between the system Mathematica and the library C-XSC supporting rigorous complex interval arithmetic. An example of AC electrical circuit illustrates the use of the presented software.