9 resultados para Bayesian hierarchical model
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
This paper presents Hi!MVC, a framework for developing high interactive web applications with a MVC Architecture. Nowadays, to manage, extend and correct web applications can be difficult due to the navigational paradigm they are based on. Hi!MVC framework helps to make these tasks easier. This framework allows building a web based interface, generating each page from the objects that represent its state. Every class to be showed in the interface is associated with two entities: its html representation (view) and its interactions in the view manager (controller). The whole html page is generated by composition of views according to the composition relationship of objects. Interactions between user and application are managed by the controller associated to the view which shows interaction elements (links or forms). Hi!MVC allows building web interface in a hierarchical and distributed way. There are other frameworks and APIs offering MVC architectures to web applications, but we think that they are not applying exactly the same concepts. While they keep on basing their architectures on the navigational paradigm we are offering a new point of view based on an innovator hierarchical model. First, we present the main ideas of our proposal. Next, we expose how to implement it using different Java technologies. Finally, we make a first approach to our hierarchical MVC model. We also compare shortly our proposal with the previously cited technologies.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Decision making and technical decision analysis demand computer-aided techniques and therefore more and more support by formal techniques. In recent years fuzzy decision analysis and related techniques gained importance as an efficient method for planning and optimization applications in fields like production planning, financial and economical modeling and forecasting or classification. It is also known, that the hierarchical modeling of the situation is one of the most popular modeling method. It is shown, how to use the fuzzy hierarchical model in complex with other methods of Multiple Criteria Decision Making. We propose a novel approach to overcome the inherent limitations of Hierarchical Methods by exploiting multiple criteria decision making.
Resumo:
System compositional approach to model construction and research of informational processes, which take place in biological hierarchical neural networks, is being discussed. A computer toolbox has been successfully developed for solution of tasks from this scientific sphere. A series of computational experiments investigating the work of this toolbox on olfactory bulb model has been carried out. The well-known psychophysical phenomena have been reproduced in experiments.
Resumo:
Results of numerical experiments are introduced. Experiments were carried out by means of computer simulation on olfactory bulb for the purpose of checking of thinking mechanisms conceptual model, introduced in [2]. Key role of quasisymbol neurons in processes of pattern identification, existence of mental view, functions of cyclic connections between symbol and quasisymbol neurons as short-term memory, important role of synaptic plasticity in learning processes are confirmed numerically. Correctness of fundamental ideas put in base of conceptual model is confirmed on olfactory bulb at quantitative level.
Resumo:
We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.
Resumo:
2000 Mathematics Subject Classification: 62F15.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.