80 resultados para Banach Space of Continuous Functions
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2000 Mathematics Subject Classification: Primary: 46B03, 46B26. Secondary: 46E15, 54C35.
Resumo:
AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.
Resumo:
2010 Mathematics Subject Classification: 47B33, 47B38.
Resumo:
Mathematics Subject Classification: 45G10, 45M99, 47H09
Resumo:
∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).
Resumo:
The paper considers vector discrete optimization problem with linear fractional functions of criteria on a feasible set that has combinatorial properties of combinations. Structural properties of a feasible solution domain and of Pareto–optimal (efficient), weakly efficient, strictly efficient solution sets are examined. A relation between vector optimization problems on a combinatorial set of combinations and on a continuous feasible set is determined. One possible approach is proposed in order to solve a multicriteria combinatorial problem with linear- fractional functions of criteria on a set of combinations.
Resumo:
* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.
Resumo:
Research partially supported by a grant of Caja de Ahorros del Mediterraneo.
Resumo:
We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.
Resumo:
2000 Mathematics Subject Classification: 46B26, 46B03, 46B04.
Resumo:
2000 Mathematics Subject Classification: 42A45.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented in the paper are simple formulas for subdifferentials of marginal, or performance functions.