5 resultados para BRST quantization

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach is proposed for the quantum mechanics of guiding center motion in strong magnetic field. This is achieved by use of the coherent state path integral for the coupled systems of the cyclotron and the guiding center motion. We are specifically concerned with the effective action for the guiding center degree, which can be used to get the Bohr- Sommerfeld quantization scheme. The quantization rule is similar to the one for the vortex motion as a dynamics of point particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel error-free (infinite-precision) architecture for the fast implementation of 8x8 2-D Discrete Cosine Transform. The architecture uses a new algebraic integer encoding of a 1-D radix-8 DCT that allows the separable computation of a 2-D 8x8 DCT without any intermediate number representation conversions. This is a considerable improvement on previously introduced algebraic integer encoding techniques to compute both DCT and IDCT which eliminates the requirements to approximate the transformation matrix ele- ments by obtaining their exact representations and hence mapping the transcendental functions without any errors. Apart from the multiplication-free nature, this new mapping scheme fits to this algorithm, eliminating any computational or quantization errors and resulting short-word-length and high-speed-design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 81Q60, 35Q40.