6 resultados para Automatic model transformation systems
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In order to exploit the adaptability of a SOA infrastructure, it becomes necessary to provide platform mechanisms that support a mapping of the variability in the applications to the variability provided by the infrastructure. The approach focuses on the configuration of the needed infrastructure mechanisms including support for the derivation of the infrastructure variability model.
Resumo:
The paper represents a verification of a previously developed conceptual model of security related processes in DRM implementation. The applicability of established security requirements in practice is checked as well by comparing these requirements to four real DRM implementations (Microsoft Media DRM, Apple's iTunes, SunnComm Technologies’s MediaMax DRM and First4Internet’s XCP DRM). The exploited weaknesses of these systems resulting from the violation of specific security requirements are explained and the possibilities to avoid the attacks by implementing the requirements in designing step are discussed.
Resumo:
We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.
Resumo:
The ability of automatic graphic user interface construction is described. It is based on the building of user interface as reflection of the data domain logical definition. The submitted approach to development of the information system user interface enables dynamic adaptation of the system during their operation. This approach is used for creation of information systems based on CASE-system METAS.
Resumo:
The demands towards the contemporary information systems are constantly increasing. In a dynamic business environment an organization has to be prepared for sudden growth, shrinking or other type of reorganization. Such change would bring the need of adaptation of the information system, servicing the company. The association of access rights to parts of the system with users, groups of users, user roles etc. is of great importance to defining the different activities in the company and the restrictions of the access rights for each employee, according to his status. The mechanisms for access rights management in a system are taken in account during the system design. In most cases they are build in the system. This paper offers an approach in user rights framework development that is applicable in information systems. This work presents a reusable extendable mechanism that can be integrated in information systems.
Resumo:
Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.