1 resultado para Antibody microarray
em Bulgarian Digital Mathematics Library at IMI-BAS
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- ANIMAL PRODUCTION JOURNAL (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (96)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (49)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (10)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Repository at Iowa State University (4)
- DigitalCommons@The Texas Medical Center (21)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (24)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (8)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (39)
- Infoteca EMBRAPA (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (89)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (129)
- Queensland University of Technology - ePrints Archive (73)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (99)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (3)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (43)
- University of Washington (2)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.