17 resultados para Algebraic Curve

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 11G15, 11G18, 14H52, 14J25, 32L07.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26E35, 14H05, 14H20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* The author was supported by NSF Grant No. DMS 9706883.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new method which is a generalization of the Ehrlich-Kjurkchiev method is developed. The method allows to find simultaneously all roots of the algebraic equation in the case when the roots are supposed to be multiple with known multiplicities. The offered generalization does not demand calculation of derivatives of order higher than first simultaneously keeping quaternary rate of convergence which makes this method suitable for application from practical point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ This research is partially supported by the Bulgarian National Science Fund under contract MM-403/9

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of the object contours in the image as sequences of digital straight segments and/or digital curve arcs is considered in this article. The definitions of digital straight segments and of digital curve arcs are proposed. The methods and programs to recognize the object contours are represented. The algorithm to recognize the digital straight segments is formulated in terms of the growing pyramidal networks taking into account the conceptual model of memory and identification (Rabinovich [4]).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Work is partially supported by the Lithuanian State Science and Studies Foundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we give su±cient conditions for k-th approximations of the polynomial roots of f(x) when the Maehly{Aberth{Ehrlich, Werner-Borsch-Supan, Tanabe, Improved Borsch-Supan iteration methods fail on the next step. For these methods all non-attractive sets are found. This is a subsequent improvement of previously developed techniques and known facts. The users of these methods can use the results presented here for software implementation in Distributed Applications and Simulation Environ- ments. Numerical examples with graphics are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS subject classification: 52A01, 13C99.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is dedicated to Prof. Nikolay Kyurkchiev on the occasion of his 70th anniversary This paper gives sufficient conditions for kth approximations of the zeros of polynomial f (x) under which Kyurkchiev’s method fails on the next step. The research is linked with an attack on the global convergence hypothesis of this commonly used in practice method (as correlate hypothesis for Weierstrass–Dochev’s method). Graphical examples are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the proof of Lemma 3.1 in [1] we need to show that we may take the two points p and q with p ≠ q such that p+q+(b-2)g21(C′)∼2(q1+… +qb-1) where q1,…,qb-1 are points of C′, but in the paper [1] we did not show that p ≠ q. Moreover, we hadn't been able to prove this using the method of our paper [1]. So we must add some more assumption to Lemma 3.1 and rewrite the statements of our paper after Lemma 3.1. The following is the correct version of Lemma 3.1 in [1] with its proof.